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SCALE MODELING OF REINFORCED CONCRETE
CATEGORY 1 STRUCTURES SUBJECTED TO SEISMIC LOADING

by

Richard C. Dove and Joel G. Bennett

ABSTRACT

The laws that govern the scale-model requirements for
reinforced concrete Category I structures over a full range
of setsmic loading extending from the elastic through the
inelastic ranges of response are developed. Three types
of scaling are then examined. The third type, called *Q"
scaling in this report, is the most useful for tailoring
structural models to existing seismic test facilities.
Finally, the way in which the three types of commonly used
damping (viscous, structural, and Coulomb) scale in these
models is derived.

INTRODUCTION

The Seismic Category I Structures Program currently being carried out at
the Los Alamos National Laboratory is intended to provide experimentally de-
termined data on the structural behavior of very large, reinforced concrete
structures when subjected to seismic loads which are larger than those con-
sidered in the structure's original design.

Unfortunately, these Category I structures are so large that the possibil-
ity of seismically testing the prototype structures under controlled
conditions is essentially nonexistent. As a result, seismic experiments on
scale models are being used in this program.

The use of scale models for the linear/elastic region design of concrete
structures is a well-established and growing practice. The Commentary on
Building Code Requirements for Reinforced Concrete (ACI 318-77)] states:



"The code permits model analysis to be used to supplement
structural analysis and design calculations. ODocumentation
of the model analysis should be provided with the related
calculations. Model analysis is most effective as a tool
for predicting the behavior of actual structures when per-
formed by an engineer or architect having experience in
this technique."

In Chapter 19 (Shells and Folded Plate Members) of the 1977 Building Code
Requ‘trements,2 model analysis is specifically discussed; Section 19.2.6.1
states:

"Analyses based on results of elastic model tests approved
by the Building Official shall be considered as valid
elastic analyses.”

In the discussion of this section, the reader is cautioned:
"Many factors enter into model tests besides shape and
direct scale. Thus, the Building Official should accept
results of model tests in 1ieu of mathematical analysis only
when the model tests have been performed under the direc-
tion of a recognized expert in this area of structural
engineering, including expertise in the theory of models
and similitude of model and prototype."3

In Australia, the current Concrete Code permits design based on model
analysis without supplementary calculat1ons.4

1t is clear that the use of models for the design and analysis of rein-
forced concrete structures in the elastic load range is well accepted. Al-
though the use of models to design and analyze reinforced concrete structures
loaded into the inelastic range is more complicated and more expensive, the
methodology is well known, and numerous ultimate load tests have been success-
fully carried out. References 3 and 5 contain information on reinforced con-
crete models for inelastic and ultimate load studies. Subjects discussed in
detail include:

1. required scaling laws

2. material selection, including modeling of the reinforcement

3. test techniques




4. accuracy of model tests, and

5. costs

Studies reported on include multistory buildings, bridges, pressure ves-
sels, dams and many of the usual structural elements.

When reinforced concrete models are used to investigate inelastic behavior
and/or ultimate load capacity under dynamic load conditions, the problem 1is
further complicated as compared to quasistatic loading. Here again, however,
the methodology is well estab11shed.6 The ACI special publication titled
Dynamic Modeling of Concrete Structures,7 is, as the title suggests, devoted
exclusively to this subject and, as its publication date {1982) indicates,
there is a rapid growth of interest in this area. A large number of tests
have been conducted on reinforced concrete models subjected to air blast,
ground shock, and missile impact loading. References 7 and 8 both report on
this type of test, and many more examples are reported in the classified
literature. It is interesting to note that facilities for blast or impact
loading of models are relatively simple to construct on an ad hoc basis.

Simulated seismic loading is no more complicated, in theory, than other
types of dynamic loading (such as air blast or ground shock); but, in fact, a
facility that will simulate seismic loading is more difficult and expensive to
construct and, as a result, there are a very limited number of seismic simula-
tion facilities that will accommodate larger scale models. Reference 9 con-
tains a list of seismic test facilities in the US that are potentially useful
for testing structural models, together with a discussion of the character-
istics and Timitations of these facilities.

Papers by Clough and Niwa and by Godden* give examples of concrete struc-
tures tested on the seismic simulator at the University of California at
Berkeley. In our research on reinforced concrete models of Category I nuclear
power plant structures we have used the seismic simulation facility at the
Construction Engineering Research Laboratory, Champaign, I11inois. This fa-
cility is the largest, both in applied force and maximum test item weight,
available in the US. Further, the control system on this shaker has recently
(January 1984) been significantly upgraded.

*Both papers can be found in Ref. 7.




There are a number of large seismic simulation test facilities in Japan,
including the worid's largest facility (the Nuclear Power Engineering Test
Center, NUPEC, facility at Tadotsu Town on Shikoku Island). Most Japanese
facilities are 1isted and their characteristics discussed in Ref. 10. Refer-
ences 11-16 are indicative of Japanese activity in the seismic testing of con-
crete models.

As the preceding review demonstrates, there is a great deal of relevant
research on which a scale model program for the seismic response of Category I
structures can build. However, the use of scaled models for studying the seils-
mic response of very large reinforced concrete structures loaded into the in-
elastic region remains a challenging problem. First of all, since the proto-
type structures are very large and the seismic simulation test facilities are
relatively small, the required dimension scale factor is large. It is sad,
but true, that experience teaches that the larger the scale factor, the more
difficult it is to construct a true scale model.

It 1s also true that modeling for dynamic experiments is more difficult
than modeling for static experiments; time, all time dependent inputs (accele-
ratton and velocity for example), and time dependent properties (viscous
effects for example) must be properly scaled in dynamic experiments.

When models are used to study structural response in the inelastic region,
the materials used in the construction of the model must have the required
similarity to the prototype materials over the entire load range; it is not
sufficient to model elastic modulus as is often done when only elastic response
is to be modeled. As a result, models for the study of reinforced concrete
structures, loaded into the inelastic region, must be constructed using the
same materials (concrete and steel) as are used in the prototype. Even when
this 1s done, there will be differences between the model and prototype mate-
rial behavior in the inelastic region because of our inability to completely
scale crack formation and growth, bonding mechanisms, etc.

These difficulties do not invalidate the use of model studies to aid in
our understanding of the inelastic response of reinforced concrete structures;
however, if valid results are to be obtained, it is essential that these scal-
ing difficulties be recognized and their effects minimized and/or accounted
for.

In the material which follows, the scaling laws are developed in some
detail so that assumptions and choices based on judgment can be clearly




recognized and their effects discussed. The scaling laws developed are then
used to design a reinforced concrete model of a Category I structure.
Finally, how scaling 1s affected by various types of damping (viscous,

structural, and Coulomb) 1is discussed.

Development of the Scaling lLaws

The typical structure of interest is shown in Fig. 1. The terms used in

the development are defined as follows.

X
3

response acceleration at any point on the structure.

the symbol used to indicate the material force vs deformation charac-
teristic; not a constant over entire loading region of interest.

the mass of the structure or any mass attached to the structure.

any linear dimension. Since only one term is used, no geometric dis-
tortion is allowed.

the input, or driving, acceleration.

time; necessary since both input and response motions are functions
of time.

force; any force, including gravitational forces, except damping

forces.
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Fig. 1. 1Idealized elevation view of a typical structure of interest.




Material properties that govern damping forces (viscous, structural,
or Coulomb) have deliberately been omitted and hence damping forces are ne-
glected. This has been done to simplify the establishment of the acceleration,
time, mass, and force scales; however, following this simplified development
damping will be addressed.

For this system the basic functional equation is

X =¢ (E, M, h, ¥, t, F). (1)
Equation (1) can be reduced to a dimensionless functional equation as follows.
A1l of the terms in Eq. (1) can be expressed using three fundamental di-

mensions

(F - force, L - length, T - time).

Thus, % - LT
E - FL 2
M- FTAL
h - L
y- LTl
t-T
F -

Equation (1), with seven quantities involving 3 fundamental dimensions, can
be reduced to a dimensioniess equation containing 4 dimensionless groups
(7 -3

2
v [EnS hF
ey (B L) (2)
y My yt My

These dimensionless groups are known as '«' terms and defining X/y as
27 EhZ/MV as w

4, the so called Buckingham 'w' theorem). Thus,

>3

2 etc. we can write

o = ¢ (v, w5, ) . (3)




Scale model theory can now be easily stated.
"Since the same functional equation (Eg. 3) governs both the model and the

prototype, we see that if we design and test the model so that , of
the model (12 ) equals T, of the prototype («2 )y t.e.,

m Y
" = « ; and, likewise
2m 2p
Ty o= My, and o= Ty then L8 must equal L8 ."]7
m P m p m p
These conditions
(«2 =, ) , etc.,
m p

establish the required scales (i.e. the scaling laws). MWriting these design
and operating conditions out we have

2 2
EL) o fER (4)
My m My b

h h
— = [—= , and (5)
<yt2>m <yt2>p
) () . (6)
My /o My /o

where m and p refer to model and prototype respectively. tach of the three
can be rearranged in the following way (using Eq. (4) as an example),

2 .

E h \° /M

o () [\ D) -
Em hp Mm Y

We now define scales as follows. Let NE’ the basic material stiffness prop-
erty scale, be Ep/Em; et N

h? the length scale, be hp/hm, etc. Then Eq. (7)
becomes



Ne = M v . (8)

In the same way, using Egs. (5) and (6), we can write all of the required scale
relationships.

2

N, = N ar

N and (9)

v

N = N, N

E n Ny - (10)

These three equations are the scaling requirements (or laws) that dictate how
the model must be designed and operated. 1f these scaling laws are satisfied
the prediction equation,
(v, = =, ), vyields X =N, X -
]m lp p VvV m

Since the six scales (NE’ NM' etc.) are related by only three equations,
any three scales can be selected arbitrarily; hence, in theory, the required
scaling can be accomplished in any number of ways. In fact, even in this sim-
ple case, the choice of which scales are to be 'arbitrarily' selected and what
values are assigned is very important and will determine whether or not the
model can be constructed and tested.

In general, the length scale (Nh) is dictated by the size of the proto-
type and the maximum size of the model that can be tested in an existing test
facility or a facility to be constructed. Without assigning a numerical value
at this point, let us agree that Nh will have to be assigned a specific
value, say Nh'

Remembering that the term E does not represent a constant but, rather, the
entire shape of the stress vs strain diagrams of all of the materials used in
the model and the prototype, we can anticipate that there is little chance of
selecting model materials that are different from the prototype materials while
still retaining the required similarity over the entire loading range. There-

fore, when models are designed to predict prototype behavior when the materials

8



are loading into their inelastic regions, it is almost always necessary to use
the same materials in the model as are used in the prototype (steel reinforce-
ment and concrete, in this case). Hence, NE = 1.%

The remaining choice of the scale to which we will assign a value is not
so clear cut. Let us consider several possibilities.

Case I. Let Ny = Wz. This would appear to be a logical choice
since having already decided to use the same materials in model and prototype,
their densities will be equal and all masses will be scaled by volume (i.e.
L3), hence N, = ﬁg. With these three choices (Nh = ﬂ;, Ne = 1, and Ny = ﬁg)
the remaining required scales become

1
Noo = I N
y —
N
Nt = Nh , and
_ =2

The first two requirements (the acceleration and time scaling) appear to pose
no special problems. If the prototype is to be subjected to a peak accele-
ration of 1 g, the peak acceleration applied to the model can (given an appro-
priate test facility) be adjusted to (ﬂh x 1) g, i.e.,

*Even when steel and concrete are used in the models and the elastic modulus
of the model concrete is the same as the prototype concrete, it is doubtful if

the desired similarity over the entire loading range is achieved--it is simply
the best we can do.




Further, if the prototype is to be subjected to a certain seismic history
lasting 12 seconds, that seismic history can be time scaled by a factor of Nt

so that for the model test the duration of the test signal would be 12/ﬁh s.*

The third scale requirement, NF = ﬁﬁ, is troublesome. In the problem

being considered the only external forces that act on the system are the gravi-
tational forces and 1t is clear that if the model is tested in the same gravi-
tational field (the Earth's) as the prototype, then the gravity forces (weights)
will be scaled as the masses are scaled

F

gravity
(1.e = __—3__L )
Nh

instead of being scaled by a factor ﬂﬁ.

The type of scaling just discussed (to be referred to as Case I in this
paper) 1s widely used in spite of this distortion. The assumption is that the
distortion of gravity forces has 1ittle effect upon the response of the model.
We can be somewhat more specific in our thinking about the effect of this dis-
tortion if we realize that in this system gravity forces affect (1) the
vertical stresses in the structure, (2) the overturning moment when the struc-
ture is displaced from equilibrium, (3) the period of free vibration (P) and
(4) any Coulomb friction effects, since these depend on normal forces. We now
see that if the gravitational forces are small compared to other forces (in-
ertia and restoring forces), the vertical stress field and the overturning
moment may not be greatly altered by distorting these forces. Furthermore if
the system is 'stiff,' the influence of gravity on the period of vibration
will be small, and finally if there are no Coulomb effects (presumably because
the coefficient of friction is small or no slippage occurs), distorting gravity
forces has no effect. Calculations show that, for the structures of interest
in this study (low profile, thick wails, limited number of stories), the verti-
cal stress, overturning moment, and natural period are not greatly affected by

*Thinking in terms of frequency (f) content, all components of the signal
applied to the model will be frequency shifted up by a factor of Nj since
the frequency scale N¢ is the reciprocal of the time scale N¢.
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gravitational forces. How important Coulomb damping may be in affecting the
response of cracked concrete is unknown.

Case II. Let Ny = 1. This too appears to be a logical choice since
testing the model in the same gravitational field as affects the prototype

suggests that V& yp. With these three choices

=
]

],ad Nn=]
n v )

Now the problem is that, unless we find some way to adjust (increase) the den-
sity of the model material, the distributed mass will be scaled as NM = ﬂﬁ

(as before) rather than the required value of ﬁﬁ. The usual way to make

this adjustment is to attach lumped masses to the model.* There are several
difficulties with this approach. (1) Attached lumped masses can never truly
model distributed mass even if the total mass is correct; centers of gravity
of components and hence moments are changed. (2) Stress distribution is af-
fected. (3) Attachment can be difficult under severe dynamic load conditions.
(4) As the model becomes smaller (larger ﬁh), relatively more mass must be
added, since the mass that must be added is directly proportional to Nh.
~ Case III. Let Ny = Q. Q represents either a constant or a function of
Nh’ and it is intended that ]/Nh < Q < 1. For this case the scales are

*Some authors have suggested using heavy aggregate material for the model con-
crete, but the fact is that, even if this modification did not change the
material properties, (Ng), not enough adjustment can be made except when

the models are very large, i.e., Np is small.

11




h ™ "h’

N =1,

Ny = Q,

Ny = Nﬁ/o

Nt = Jﬁ;?ﬁj_and
N =ﬁﬁ.

Clearly this is a case somewhat intermediate to Cases I and 1I, and as you
would expect, all of the difficulties that were discussed for both of the first
two cases will apply to this case. Gravity forces in the model will be dis-
torted, as in Case I, but the amount of distortion will depend upon the value
selected for Q. Mass will still have to be attached to the model, as in Case
11, but the amount will depend upon the value selected for Q. Perhaps the

most important feature of Case III modeling is that the value of the accelera-
tion scale can be selected to match the capabilities of the model test facil-
jty. 1In designing and testing small models, the authors have found that it is

usually not convenient to use acceleration scales of either 1/Nh (Case I) or
unity (Case I1).

Appiication of the Scaling Laws to the Design and Testing of a Typical
Category I Structure

For the purpose of this example, we begin by assuming that the prototype
Category 1 structure has a wall thickness (h_) of 30 inches and all other
dimensions are proportioned accordingly. Because of cost, size, and weight
limitations, we decide that the model structure will have a wall thickness
(hm) of 1 inch; hence, Nh = 30. Because we wish to investigate the be-
havior of the prototype when the seismic input is large enough to produce in-
elastic deformation of the structure, we will use steel reinforced concrete
for the model in an attempt to obtain the desired similarity of material
behavior over the entire loading range; hence, NE = 1.

12



We now assume the largest peak acceleration value to which the prototype
will be subjected (VPK) is 1 g. A study of the available seismic test
facility's capabilities indicates that for the mass of the model we are con-
sidering, together with the mass of all the necessary mounting hardware, the
peak acceleration value that can be applied to the model (VPK ) while still
maintaining good pulse shape (or frequency content) control is 5 g. Therefore
we select Ny = 1/5, 1.e., Q = 1/5.

This will be a Case I1I model and the other required scales are

2
- N2, - 30 _
Ng = NS0 = 35 = 4500
= 30 _
Ny =1/N/Q =1[75 = 12.25
2 .2
Ne = K5 = 30° = 900.

These scaling laws are now used to design and test the model. First, the
model is constructed as a 1/30-scale version of the prototype. Second, the
amount of mass that must be added to the model to achieve the required mass
scale is computed. The mass of the model desired is

The mass of the prototype (Mp) can be computed from the prototype volume and
density, but an easier method (assuming the model has been fabricated) is to

write Mp = Mm' x.ﬁz, where Mm' is the mass of the model as fabricated
without any added mass. Then the mass to be added to the model is

13
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A m.d. m' ?’
=3
M = Hm'Nh - M or
A NH m'

_ 3
Ni
My = M, <W -> . ()

For the example being considered (Nh = 30, NM = 4500), this reduces to

MA = b Mm This added mass should, of course, be uniformly distributed

throughout the model since its purpose is to properly scale the effect of the

structure's distributed mass. In general, this will not be possible, and in
the example being considered, the added mass will be located at each floor
level as shown in Fig. 2. Since the location of this added mass has consider-
able effect on the system's dynamic response, it is important that the value
substituted for Hm' (the model's mass) be the effective value of mass (Hme,)
lumped at the location where the added mass is to be attached. This value of
Tumped mass, which is dynamically equivalent to the distributed mass it re-
places, can be computed (using energy methods or Rayleigh's method) or (assum-
ing the model is available) from measured values of the structure's natural
frequency with and without added mass.

The appropriate test signal is now determined by amplitude and time scal-
ing the seismic history of interest by the required acceleration and time
scales. Assuming that the 1940 E1 Centro N-S seismic history, edited to 16 s
and one g peak acceleration, is chosen as the prototype excitation, the model
test signal is obtained by amplitude scaling this record by NV = 1/5, which
produces a peak acceleration of 5 g's, and by time scaling the record by Nt
= 12.25, which produces a record of 1.306 s duration and containing frequency
components that have been increased by a factor of 12.25.

Investigation of the Effect of Damping on Reinforced Concrete Models

In the preceding discussion, the effect of damping on a scale model's be-
havior was deliberately neglected because its inclusion complicates the analy-
sis but does not affect the establishment of the important scaling laws. Now,
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Fig. 2. Method of attaching mass to a typical structure.

however, we are obligated to investigate how damping forces should be scaled,
whether they can be scaled, and, if not, what is the effect of this distortion.

In this discussion, damping is used to mean energy loss during cyclic
loading. Three damping mechanisms are considered: (a) viscous, or frequency
dependent, damping, (b) structural, or solid, damping, and (c) Coulomb, or dry
friction, damping. For these three types of damping, the damping forces are
defined as follows:

Viscous damping force; Fv = v VA/b in which
v Is the material viscous damping coefficient,

V i1s relative velocity between surfaces,

A 1s surface area, and

b is perpendicular distance between the surfaces.
Note that the usual system, or element, viscous damping coefficient (c), for
which Fv = ¢V, Is related to v as ¢ = vA/b. A and b are, of course,
not material properties and hence c¢ is not a material property. Also note
that the widely used viscous damping ratio, ¢ = c/cc = c/Z\/Ei} in which
cc is the ‘critical' damping equal to 2\/Eﬁ; where K is stiffness and M is
mass, 1s not a material property.

15
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Structural damping force; FB = BUA/b* in which

B is the material structural damping coefficient,

u is relative displacement between surfaces, and

A and b are as previously defined.

Note that the usual system, or element, structural damping coefficient
(»), for which FB = vu, is related to B as » = BA/b. Obviously, v is not a
material property. In structural damping calculations the damping force fis
also often written as FB = »'KU and »' is called a "proportional®” structural
damping coefficient. Obviously »' = »/K, where K is the element stiffness and,
again, »' is not a material property.

Coulomb damping force; Fu = uF, in which

N
p is the Coulomb damping coefficient, and

FN is the force normal to the surface on which slipping occurs.

u is usually assumed to be a material property; that is, the value of
p is assumed to be dependent upon the two materials in contact at the sliding
interface. Actually, u, and hence Fu’ does depend upon surface geom-
etry. This may be of considerabie importance in scaling; however, in the anal-
ysis which follows, u will be taken as a material property and, hence, if the
same materials are used in the model and prototype, My = Moo

If we assume that by using the same material for model and prototype, all
of the basic material damping coefficients (v, B, u) are the same in the model

and the prototype, we may write

v = v,
m
= , and
BD
we = up-

Now the ratijo of damping forces in the model to those in the prototype can be
written using the fundamental equations for the damping forces and the scales
previously defined.

*Although the magnitude of structural, or solid, damping force (Fg) is not
considered to be velocity dependent, this type of damping is assumed to oppose
relative velocity, and the damping force exists only for relative velocities
greater than zero.




For viscous damping forces, Fv

v VA

F = mmm , and
’m b
m
v VA
F = ppp
vp _ bp

Dividing and noting that Ym = vp,

F
V A b
b _ ppm
F VmAmb !
Vo p
substituting
bm = bp/Nh’
A = A/N 2 and
m  p’"h ?
vm = Vp/N"Nt’
we have

(12)

How th1s ratio of viscous forces compares to the required force scale (N )

of Nh previously established depends upon how the model has been scaled.
The ratios of viscous forces for the three modeling cases previously discussed

are shown in Table I. Note that viscous damping forces are distorted in every

*The velocity scale (Ny) is the acceleration scale (Ny) times the time
scale (Ny).

17




case; specifically, viscous damping forces in the models are too large (as
compared to the viscous damping forces in the prototype).

Proceeding in the same manner, we can write the ratio of the structural
damping forces involved, thus

B _ Nh . (13)

Equation (13) shows that structural damping is correctly scaled for all model-
ing cases (see Table I).

How Coulomb damping forces (Fu) are scaled depends upon how normal
forces (Fn) are scaled since F‘1 = u Fn and we have assumed that "u" is the
same in both model and prototype. Since in buildings the vertical normal
forces include gravity forces, and since gravity forces are only correctiy
scaled (as Nﬁ), in Case II models we note that Coulomb damping forces are
only correctly scaled in Case II models. Since the vertical normal forces in
a structure depend not only on gravitation forces but upon vertical inertia
forces and forces developed by flexure and since, in general, we do not know
the relative magnitude of these forces, the distortion of Coulomb damping
forces in the other two modeling cases remains unknown. However, with Case I
and Case III models, the gravitational forces are too small (as compared to
gravitational forces in the prototype); hence we know that the Coulomb forces
will also be too small in the model.

This analysis demonstrates that the effect of scaling on damping is under-
stood and can be accounted for provided that the nature of the damping forces

is known. This then 1s the problem with reinforced concrete, especially when
loaded into the inelastic range; the exact nature of the damping mechanism is
unknown. 1f, as is often assumed in analysis of structures, the damping is
structural, or solid damping, then damping forces are not distorted. Further,
if Case II scaling 1s used, neitther structural nor Coulomb damping forces are
distorted, and the viscous damping forces are distorted by a minimum amount

(the viscous forces in the model are too large by a factor of ﬁ;/z).

18




TABLE 1
DAMPING FORCE RATIOS

Type of Viscous Force Structural Force Coulomb Force
Modeling Ratio Ratio Ratio
F /F F /F F /F
vp m pp Pm up Yo
Case 1 N N, 2 ?
h h :
= 3/2 = 2 = 2
Case I1 Nh Nh Nh
Case 111 ﬁh3/2 072 th ?

Since the concept of viscous damping ratio, ¢, is used in most design
and analysis methods applied to Category I structures,* it is useful to re-
think the preceding analysis of viscous damping forces in terms of ¢.

Using the terms defined in the preceding paragraphs,

_ vA
¢ w Jw

Writing this expression for the model (subscript m) and the prototype (sub-
script p) and dividing, we have

Z v A b K M 1/2
»p _ P P _m _m _m
cm m Am bp Kp Mp
Now if the model and prototype are of identical materials and v = v

m
(as was previously assumed), and we substitute scale definitions we have

% _ 1. ﬂhz. 1. <1__. 1 172
_ T
c N, \N, §°/0

*C is used because of its convenience in computations, not because designers
believe that the damping mechanism is viscous.
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or
* %

4 N
o Vwy (14)
(m

Equation (14) tells us how the viscous damping ratio, ¢, of two struc-
tures (model and prototype) will be related if the damping is viscous. This
suggests that, if we bulld two structures of different sizes (two different
scale models) and test and measure Z on each one, we can compare the ratio
of measured results to the ratio predicted by Eq.(14) to investigate whether
or not the damping is indeed viscous.

For example, we might build and test 1/30 and 1/10-scale models of a
Category I structure and design and test them so that the smaller structure is
a Case II (Q=1), 1/3 scale (Nh = 3) model of the larger structure. Then
Eqg. (14) would predict that the measured values of ¢ would be related as

4

larger - vq7§
csmal]er
or
Clarger 0.58 csma]]er’
if the damping is viscous.
**Note that the area scale, NA = _ﬁ; that the stiffness scale, Ng = NF/N' = ﬁﬁ/ﬁh

= Nh; and that when the mass scale, Nm’ s written as ﬁﬁ/u, we cover all
three model cases since for a Case I model @ = 1/ﬁ6 and for a Case 1I model
qQ =1.
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